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Abstract —Subvocal electromyogram (EMG) signal 

classification is used to control a modified web browser 

interface. Recorded surface signals from the larynx and 

sublingual areas below the jaw are filtered and transformed 

into features using a complex dual quad tree wavelet 

transform. Feature sets for six sub-vocally pronounced control 

words, 10 digits, 17 vowels and 23 consonants are trained using 

a scaled conjugate gradient neural network. The sub vocal 

signals are classified and used to initiate web browser queries 

through a matrix based alphabet coding scheme. Hyperlinks on 

web pages returned by the browser are numbered sequentially 

and queried using digits only.  Classification methodology, 

accuracy, and feasibility for scale up to real world human 

machine interface tasks are discussed in the context of vowel 

and consonant recognition accuracy. 

 
Index Terms —EMG, sub-vocal speech, wavelet, neural 

network, speech recognition, web browsing, vowels, consonants 

 

I. INTRODUCTION 

UMAN to human or human to machine communication 

can occur in many ways [4]. Traditionally visual and 

verbal processes tend to dominate both the method and the 

presentation format. As a result, technology to enhance 

human communication has focused on public, audible tasks 

such as those addressed by commercial speech recognition. 

However, audible tasks place a number of constraints on 

situation suitability. These constraints include a vulnerability 

to ambient noise, requirements for clear formation and 

enunciation of words, and a shared language. When sound 

production limitations intervene, they can become very 

problematic. Examples of such situations might be suited 

HAZMAT operations, underwater or space EVA, crowded 

environments, high privacy requirements, or medical speech 

impairment.  In many situations, very private communication 

is desirable, such as telephone calls, password entry, offline 

discussion while teleconferencing, military operations, or 

human /machine data queries. Vision based modalities, such 
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as email, can also cause problems because of non visual 

emotional information otherwise recognizable during speech. 

In addition, the intensity or forcefulness of the 

communication may be lost or misinterpreted. A 

communication alternative that can be private, non-dependent 

on physical production of audible signals, and still contain 

emotional subtleties of speech, could add valuable enrichment 

to the communication process.  

An alternative way of communicating being considered at 

NASA Ames Research Center is the direct interpretation of 

nervous system control signals sent to speech muscles [9]. 

Specifically, we use non invasive aggregate surface 

measurements of electromyographic signals or EMGs to 

categorize muscle activation prior to sound generation [3]. 

Such signals arise when reading or speaking to oneself with 

or without actual lip or facial movements. Hence the 

information we are using does not show up using external 

observation, nor in current methods used to enhance speech 

recognition, such as machine lip reading.  

In the present paper we demonstrate one EMG approach to 

the recognition of discrete, speaker dependent, non vocalized 

speech used to control a web browser. In previous work we 

showed the adequacy of EMG signals for the control of a 

virtual joystick and virtual numeric keypad entry [2]. In [1] we 

demonstrated recognition of a small sub acoustic control 

vocabulary.  

The present control demonstration uses differential EMG 

signals measured on the side of the throat near the larynx and 

under the chin to pick up weak signals associated with 

aggregate muscle activity of the vocal tract and tongue. We 

capitalize on the fact that muscle activation leading to speech 

must remain relatively consistent and standardized to be 

understood by others. The concept is to intercept speech 

signals prior to sound generation and use them directly, 

bypassing auditory models such as mel cepstrums to filter 

signals.  

After an appropriate feature transformation, EMG signals 

are input into a neural network or support vector machine 

classifier for recognition training and testing. Given 

sufficiently precise sensors, optimal feature selection, and a 

valid signal processing architecture, it is possible to use these 

extremely weak signals to perform usable tasks without 

vocalization and non-invasively. In a sense, we are 

approximating a totally silent control methodology such as 

that sought using EEG (i.e. thought based approaches [11]), 

but with much lower signal and measurement complexity. 
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As alluded to above there are a number of specific 

situations better suited for using surface EMG measurement 

than standard auditory speech recognition or much more 

invasive medical alternatives. Among them are removal of 

health risks associated with sensor implantation, the 

requirement for detectable sound levels during 

communication, and potential content enrichment through 

additional physiological information.  

To enable such technology, we also require sensors that 

are adequate to measure convolved EMG surface signals, 

signal processing algorithms that can transform signals into 

usable feature sets, and a trained neural network or other 

pattern classifier to learn and classify features in real time. Our 

earlier isolated word experiments demonstrated an average of 

92% accuracy in classifying six sub acoustic control words: 

stop, go, left, right, alpha, and omega. Later that year we 

demonstrated the classification of ten digits (0–9) at 73 

percent accuracy. In this paper, we expand on our initial 

results, demonstrating the application of the technology to 

sub acoustic web browsing and control using both digits and 

control words simultaneously.  

Next, we expand the recognition of individual words to 

include vowels and consonants, as a first step toward use in a 

generic, phoneme-based classical speech recognition 

architecture [5]. We finish with a discussion of issues yet to 

be resolved. 

Little work testing the ability of EMG to perform speech 

recognition by itself appears to have been done. Parallel work 

for speech recognition augmentation along the lines of that in 

our word experiments was performed by Chan [8]. He 

proposed supplementing voiced speech with EMG in the 

context of aircraft pilot communication. In their work they 

studied the feasibility of augmenting auditory speech 

information with EMG signals recorded from primary facial 

muscles using sensors imbedded in a pilot oxygen mask. He 

used five surface signal sites during vocalized pronunciation 

of the digits zero to nine using Ag-AgCl button electrodes 

and an additional acoustic channel to segment the signals. 

Their work demonstrated the potential of using information 

from multi-source aggregated surface to improve performance 

of a conventional speech recognition engine.  

 

II. METHOD  

A. Data Acquisition  

 

Five subjects, male and female ranging in ages from 18 to 55 

were recorded while sub acoustically pronouncing six words: 

“stop”, “go”, “left”, “right”, “alpha”, and “omega”, as well as 

ten digits (0 through 9). In a separate experiment, wo subjects, 

females aged 18 and 33, were recorded while sub acoustically 

pronouncing  42 phonemes (Table 1.)   

The six words were chosen as a control set for a small 

graphic model of a Mars Rover (Fig. 1). which we use in our 

laboratory to test bioelectric control approaches [14]. Alpha 

and omega were used as generic control words to represent, 

for example, faster/slower or up/down, as appropriate for 

arbitrary tasks. The digits are used to permit precise numeric 

values for software menus and to allow more versatility in 

possible control tasks. In the web browsing task we used the 

digits in a numeric table to permit the coding of letters of the 

alphabet without resorting to a full alphabetic word set.  

Vowels and consonants were tested to evaluate whether our 

speech detection pattern recognizers could exceed the original 

Phonemes

zapz

yachty

withw

vatv

thinth

thendhturner

talkttoyoy

sitstooluw

sheshsickix

redrpeteh

putppercentaxr

nonhitih

matmgoow

lidlgasae

joyjhfoulaw

helphhfeeliy

gutgdogao

genrezhdayey

forkfcutah

digdcaraa

cutkbookuh

chinchbiteay

bigbagoax

WordsConsonantsWordsVowels

 PHONEMES AND TRAINING WORDS 

Figure 1: Mars Rover Simulation 

Table 1: Phonemes and Training Words 
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small set of speaker dependent words. 

EMG signals were collected from each subject using two 

pairs of self-adhesive AG/AG-CL electrodes. They were 

located on the left and right anterior area of the throat 

approximately .25 cm back from the chin cleft and 1- 1/2 cm 

from the right and left side of the larynx (Fig. 2). Initial 

experimentation indicated that as few as one electrode pair 

located diagonally between the cleft of the chin and the larynx 

 

 

Figure 2: EMG electrode positioning 

would suffice for small discrete word set recognition. Signal 

grounding required an additional electrode attached to the 

right wrist. Each electrode pair was connected to a commercial 

Neuroscan signal recorder, which recorded the EMG 

responses sampled at 2000 Hz, with a 60 Hz notch filter (to 

remove line interference), a 500 Hz low pass filter and a 30 Hz 

high pass filter.  

Each subject recorded between one and two hundred 

exemplars of each digit and control word in morning and 

afternoon sessions. All words and digits were collected using 

a longitudinal experimental design over a period of two 

months including morning and afternoon sessions as well as 

minor variations in electrode placements. In the word and digit 

experiments, the signals were blocked offline into two second 

windows, and extraneous signals, e.g. swallows or coughs, 

were removed using SCAN 4 Neuroscan software.  Fig. 3. 

shows a blocked EMG signal for the word “omega”. 

Matlab scripts were written that provided a unified 

processing, from recording through network training. These 

routines were used to perform tasks such as transforming raw 

signals into feature sets, dynamic thresholding, compensation 

for changes in electrode position, adjusting signal/noise 

levels, and implementing algorithms used for recognition and 

training. The same routines were used both for the real time 

recording and the recognition experiments.   

B. Feature Generation  

 Blocked signal segments for each word were transformed 

into feature vectors via signal processing transforms 

combined with a coefficient number reduction technique. The 

latter was required to reduce the number of produced 

coefficients to levels manageable for input into the neural 

network classifiers. Tests without such compaction were also 

performed using support vector machines on the entire 

coefficient.  Five feature transforms were evaluated. They 

were: 

· A windowed Short Time  Fourier Transform (STFT),  

· Discrete and Continuous Wavelets (DWT & CWT) 

using a Daubechie 5 and 7 base [6,7,12] 

· Dual Tree Wavelets (DTWT) using a Near_sym_A 5,7 

tap filter and a Q-shift 14,14 tap filter [10].  

· Moving averages with lagged means, medians, and 

modes  

· Linear Predictive Coding (LPC) coefficients 

Features were created somewhat differently for each of the 

above transforms, depending on unique transform strengths 

or weaknesses. Each feature set produced varying degrees of 

efficacy in pattern discrimination. The most effective 

transforms for real time processing were a windowed STFT 

and Dual Tree Wavelet coefficients (DTWT), both of which 

were post-processed in a similar way to create feature vectors. 

The procedure used for these transforms was as follows. 

Coefficient vectors were generated for each word using one 

of the two transforms.  A rectified value of the raw signal was 

used in the case of the DTWT and non-rectified signal for the 

STFT. Vectors were post processed using the Matlab routines 

to create a matrix of the spectral coefficients. The matrix for 

each word example was in turn divided into a set of sub 

matrices. The number and size of the sub matrices depended 

upon spectral signal variance. Sub matrix sizes were chosen 

based on an average signal energy in a given region of the 

spectral matrix. Both equal and unequal size segmentation sub 

matrix schemes were considered. A single representative 

value for each submatrix (e.g. a mean) was then calculated to 

reduce the number of variables presented to the pattern 

recognition algorithm and capture average coefficient energy.  

Figure 3: Subacoustic EMG signal 
for "omega" 

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com


Draft Sub Acoustic Paper NASA Ames Research Center 1/5/04 Not for distribution – Jorgensen  
 

4 

We chose a simple mean as the representative value 

because other obvious choices, including medians, modes or 

maximum sub matrix values, showed no improvement over a 

simple mean. The result was a vector of coefficient means for 

each sub acoustic word or vowel instance. The reasoning 

behind this approach was that a word or vowel could be 

treated as a noisy visual pattern recognition problem where a 

spectral energy matrix was a 2-D image and features were 

extracted from that image to discriminate among interesting 

parts of the ‘image’ patterns. DTWTs were selected rather 

than standard discrete wavelets to minimize typical wavelet 

sensitivity to phase shifts. Similarly, sensitivity to temporal 

shifting in the STFT was improved using windowing.  

C. Feature Training  

The above feature vectors were used to train a neural 

network or support vector machine pattern recognition 

engine. Words, digits, or vowel and consonant examples were 

split into three sets: a training set, a validation set, and a test 

set.  Recognition performance was evaluated using 20 percent 

of the untrained word exemplars, and signals from a single 

electrode pair were randomly drawn from the data recording 

sessions. Five paradigms were evaluated as signal classifiers. 

Two that showed superior performance were: 

· Scaled conjugate gradient nets 

· Support Vector Machines. 

A scaled conjugate gradient neural net was used for the 

following reasons. Standard Leavenberg-Marquard gradient 

search reached the lowest mean square error levels but 

required too much system memory to handle the large data 

sets. This was true even using reduced memory variations. 

Lower mean squared error (MSE) did not translate into 

improved generalization for new signals probably due to the 

high sensor noise inherent in EMG surface signal 

measurements. A scaled conjugate gradient (SCG) network 

produced very fast convergence with adequate error and 

showed comparable performance to the full matrix inversion 

Levenberg-Marquardt  (LM) implementation. This may be 

because the SCG also used the same trust region gradient 

criteria used by the LM algorithm. In earlier EMG experiments, 

we successfully used Hidden Markov Models (HMM) [2,9] 

but so far they proved most effective with non-multi-modal 

signal distributions, such as discrete gestures, rather than the 

temporally non-stationary sub-auditory signal patterns. HMM 

models required extensive pre-training to estimate transition 

probabilities. We anticipate further evaluation and have not 

ruled out HMM approaches, and may use a HMM/Neural net 

hybrid if warranted.  

C. The  Real Time Environment  

   To explore recognition performance under many signal 

transform variations, we minimized the amount of on line 

human experiment time by creating a simulated real-time 

environment. This environment is part of a software system 

being developed at NASA Ames for large agency data 

understanding research. Using that environment, EMG 

signals were recorded to files and then later used to train and 

test recognition engines.  

 

III. EXPERIMENTS  AND RESULTS 

A. Feature Transforms and Performance  

 
Features for the signal sets were generated using Kingsbury’s 

Dual Tree Wavelets (DTWT) [10] and windowed Short Time 

Fourier Transforms (STFT). DTWT coefficients were coded 

into the previously reported (1) feature sub matrices of 5 rows 

of scale versus 10 columns of time segments. Each DTWT 

was based on a discrete wavelet transform defined as: 

 

Where k is the translation parameter, j is the 

dilation/compression parameter, and w is the expansion 

function. We used a quarter sample shift orthogonal (Q-shift) 

filter having 10,10 taps with a near-symmetric-A filter having 

5,7 taps. Kingsbury’s DTCW implementation of the Discrete 

Wavelet Transform (DWT) applies a dual tree of phase 

shifted filters to generate real and imaginary components of 

complex wavelet coefficients. The most important feature for 

our research was its improved shift invariance to the position 

of a signal in a signal window. The DTWT also showed good 

directional selectivity for diagonal features, limited 

redundancy independent of the number of scales, and 

efficient order-N computation, all of which are valuable for real 

time implementation.  

Our results showed that the DTCW did increase shift 

invariance, lowering error over a standard DWT by several 

percentage points. Though discrete, the DTWT achieved 

comparable generalization performance to the slower 

continuous wavelet transform (CWT) with much lower 

computational load. It did this by doubling the sampling rate 

at each level of a short support complex FIR filter tree. 

Samples needed to be evenly spaced. In effect, two parallel, 

fully decimated trees are constructed so that the filters in one 

tree provide delays that are half a sample different from those 

in the other tree. In the linear phase this required odd length 

filters in one tree and even length filters in the other. The 

f (t ) = b j,kw j,kj,k
å ( t)

w
j ,k

( t ) = 2
j / 2

w( j2 t - k )
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impulse response of the filters then acted like the real and 

imaginary parts of a CWT, which is how Kingsbury uses 

them. Table 2 shows the achieved level of recognition for six 

control words using the DTWT. 

  

 

 

Table 2: Percent Correct Word Classification 

TRANSFORM 
 

 

 

 

 

 

 

RECOGNITIO

N RATES 

Dual Tree 
Wavelet 
 
2 level, 

near 

symmetric 

filter; q 

shift b;  

Trained 

with 125 

epochs 
  

“Stop” 84% 

  

“Go” 100% 

  

“Left” 91% 

  

“Right” 80% 

  

“Alpha” 97% 

Average 92% 

 

For the STFTs we used a standard implementation of the 

transform having a Hann window and a 50% time overlap to 

smooth the signal window. STFT coefficients were also 

tessellated into a 5 by 10 or 50 feature vector. Unequal 

windows based on variances were also considered but did not 

add to overall performance. We did take advantage of the 

computational efficiency of an STFT in the real time tests and 

still had fairly high recognition performance, though not as 

good as the DTWT, which had a recognition average of 92 

percent. For more detail about the relative confusion between 

words and the viability of reducing feature order by principle 

component analysis and other learning algorithms considered 

see  [12]. 

 

B. Digit Learning  

 
In a similar fashion, ten digits (zero through nine) were 

added to the training sets to determine whether the classifier 

could separate a larger number of signals as effectively as the 

control words. A support vector machine was used to 

compare several basis set assumptions. One hundred thirty 

four samples of each digit were trained. Forty unseen 

examples for each digit were tested in two ways. First, the 

DTWT coefficient sets were reduced into same 50 feature 

vectors as the for the STFT, above. The basis sets tested with 

these vectors consisted of polynomial bases, hyperbolic 

tangents, and simple (“raw”) means. Second, the original full 

set of 5000 complex DTWT coefficients were tested as a large 

single vector without coefficient size reduction to determine 

the impact of using average values over a large number of 

coefficients.  For this set, we used radial basis and simple 

linear basis transforms. Results are presented in Table 3.  

In summary, the best SVM performance was obtained with 

a radial basis, obtaining 73.13 percent discrimination for 

unseen word samples. Slightly poorer performance was 

obtained with the reduced coefficient set using a linear 

transform (73.12) percent. Overall, levels were roughly 

comparable across all transforms with slightly worse 

performance for a hyperbolic transform at 73, polynomial basis 

at 72.7 and raw mean at 72.5. Variance between the word 

averages was minimal for the radial basis hence it was deemed 

best for our purposes. 

 

C. Web Browsing  

Using the digits and the control words it was possible to 

generate a useful test of the technology in a more applied 

Sub Acoustic Web Browsing

Figure 4: Sub-acoustic Web Browsing 

SVM S G L R A O 1 2 3 4 5 6 7 8 9 0
Linear 63 93 6367 78 90 70 53 78 8575 78 75 80 63 63

Tanh 63 93 6365 78 90 70 50 78 8575 75 75 80 65 65
Poly 63 93 6365 78 90 70 55 78 8575 75 75 80 56 63
Raw-RB 75 90 7570 80 75 70 68 73 6875 70 65 78 70 60
Radial 63 93 6368 78 90 70 53 78 8575 75 75 80 65 63

Table 3: Percentage of digits classified using SVM basis 
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context. We chose subvocal web browsing as a task that 

would require a relatively high recognition rate, processing 

speed, and feedback. Web browsing was performed as 

follows. A well known web browser’s HTML output was 

modified so that each hyperlink on a web page was returned 

with a sequential number (Fig. 3).  Because we did not attempt 

to train 26 alphabetic characters, we needed some way to use 

only digits and control words to maneuver around a page and 

send new search queries to a browser window. Our approach 

was to place the alphabet into a matrix look up table where 

each row and column index corresponded to a particular 

alphabetic character. So for example cell 1,1 would correspond 

to “a”, 1,2 would correspond to “b” and so on. Code was 

written that sent the output of the signal classifier to both a 

graphic engine and the main entry line for the web browser.  

Figure 4 shows which digit was recognized (the bright red 

key) and which alphabetic options would be potential 

candidates for the next key entry (dark red keys). At the top of 

the page is the blocked signal sent to the feature generator 

and the SVM classifier. On the very top of the web page in 

small print is the word being spelled out (in this case NASA) 

and the bottom of the browser page shows the returned result 

after a subacoustic command “GO” was executed. Notice the 

red numbers after each hyperlink. These can be queried using 

the numbers without again having to go to the awkward 

alphanumeric tabular coding scheme to enter data. 

This demonstration accomplished several objectives. First 

it is possible to control an external task environment using 

sub acoustic speech. Second, it shows that the routines used 

to record, segment, and train sub acoustic samples can 

function in a simulated real time environment to query a web 

browser. At present, our interface is slow and awkward. 

Words and digits are sub acoustically pronounced with 

pauses between them to facilitate recognition. If the signal is 

improperly classified the command “OMEGA” is used to 

negate it. The primary purpose was to stress-test the pattern 

recognition algorithms and improve real time EMG signal 

processing. 

 To extend this system to more complicated real time tasks 

or eventually full scale speech recognition, it will be 

necessary to demonstrate that signal recognition can occur 

for sub-acoustic elements smaller than words, such as 

phonemes. In the next section we present our first results 

towards that objective. We make no attempt to deal with 

contextual complexities such as dipthongs. The scalability of 

sub-acoustic EMG signals to very large sets of patterns has 

yet to be demonstrated but we did obtain results for reduced 

vowel and consonant sets. 

D. Vowel and consonant recognition  

Eighteen vowels and twenty-three consonants were trained 

in a similar fashion to that used for the words and digits. The 

vowels and consonants were collected over four days using 

female subjects only. To minimize variation in sub-vocal 

pronunciation, each subject sub-vocalized a phoneme while 

thinking of a ‘target’ reference word with the correct sound. 

For example (see Table 4) “dog” was used as the target word 

for the sub vocal muscle positioning of the ao vowel 

pronunciation. Similarly, consonant syllables used a target 

phoneme plus ax (i.e. d is sub vocalized as dax , or “duh”).  

To mark the signal time point at which a phoneme was 

produced, the subject touched a computer key, marking which 

signals corresponded to true subject events rather than noise 

events or other anomalies such as swallowing or coughing. 

Twelve sets of ten sub-vocal sounds were recorded by each 

subject for each phoneme and blocked into 1.5-second 

recording windows. Each signal channel was treated 

independently, potentially providing 12x10x2=240 signals per 

phoneme per subject. Our first classification rate was low but 

significantly better than chance: an average overall rate of 

big cut fork genre gut help lid mat no put red she then thin vat with yacht TOTAL

big 28 5 14 0 0 0 7 12 0 30 0 0 0 0 0 5 0 101
cut 3 44 0 0 15 0 9 0 3 0 15 3 0 0 3 6 0 101

fork 2 4 44 0 2 0 2 2 4 4 4 4 0 0 25 5 0 102
genre 0 4 0 38 0 0 9 0 18 0 13 11 0 0 0 7 0 100

gut 0 18 0 4 41 4 20 0 2 0 0 2 6 0 0 2 2 101

help 0 0 8 0 3 56 10 0 5 3 8 5 0 0 3 0 0 101

lid 0 7 2 0 5 0 74 0 0 7 2 0 0 0 0 0 2 99
mat 13 0 0 0 0 0 0 61 0 6 6 0 2 0 11 2 0 101

no 0 3 3 0 3 0 5 0 81 0 0 0 0 0 0 5 0 100

put 14 5 5 0 2 2 9 2 5 44 7 0 0 2 2 0 0 99

red 0 2 2 2 0 2 2 2 2 0 66 0 0 9 2 7 0 98
she 0 4 0 13 0 0 4 0 4 0 29 36 0 2 2 4 0 98

then 3 9 0 0 0 0 0 0 0 6 9 3 49 23 0 0 0 102
th in 0 0 0 0 0 0 0 2 0 0 2 0 14 79 2 0 0 99

vat 5 0 19 2 0 2 0 2 0 9 2 2 0 0 53 2 0 98

with 0 2 0 2 0 0 6 6 2 2 27 0 0 0 6 46 0 99

yacht 0 14 0 18 0 0 16 2 4 6 27 0 4 4 0 0 4 99

TOTAL 68 121 97 79 71 66 173 91 130 117 217 66 75 119 109 91 8

Table 4: Consonant recognition 

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com


Draft Sub Acoustic Paper NASA Ames Research Center 1/5/04 Not for distribution – Jorgensen  
 

7 

50%. This represented data training a scaled conjugate 

gradient network at 2500 iterations using one subject and the 

DTWT feature vector, with some phonemes removed (see 

below). 

Previous results in the speech recognition literature [15] 

suggested that alveolars (where the tip of the tongue touches 

alveolar ridge) would be problematic for subvocal 

pronunciation. This did indeed seem to be the case based on 

the table of consonant confusions (Table 5.). As a result six 

alveolars (t, d, s, z, ch, j ) were removed to obtain this 

categorization level. With the alveolars included, 

classification was at 33 percent (1500 iterations, dual tree 

wavelet transform, one subject). Removing the remaining 

alveolars (n, l, and maybe r) as well from the final tabulation 

would probably further improve the categorization results, as 

they seem to often be in the most poorly classified categories 

but for purposes of a realistic set we desired the vowels and 

consonants to remain as complete as possible at this stage. 

 Another problematic feature was voicing. Confusion pairs 
often differed only in the voicing feature For example, d 

(voiced alveolar plosive) and t (voiceless alveolar plosive) 

had a high confusion rate.  
Work on sub-vocal phoneme recognition is still at a 

preliminary stage. We are currently exploring different sensor 
positioning to detect the problematic features discussed 
above, as well as more sophisticated context-sensitive 
techniques borrowed from the far more advanced research 
area of vocal speech recognition. 

IV. FUTURE DIRECTIONS 

We are currently exploring enabling technologies to 

enhance EMG speech recognition and conduct more 

extensive experiments to increase task usability and 

vocabulary size. It is recognized that wet AG/AG-CL and dry 

electrodes are problematic for many real world tasks due to 

contact and surface resistance. To overcome that problem, 

new non-contact sensors (Fig. 4) are being developed. For 

example, NASA Ames Research Center is working with 

Quantum Applied Science and Research (QUASAR) to 

develop electric potential free space sensors that do not 

require resistive, or even good capacitive coupling to a user. 

The sensor design provides a high input impedance for the 

electrode that measures free space potential, while 

accommodating the input bias current of the amplifier. At 10 

Hz and above, the sensor has comparable sensitivity to 

conventional resistive contact electrodes. In the off-body 

mode the sensor can make an accurate measurement even 

through clothing. More detail about the sensors and our real 

time environment can be found in [13, 14]. 

 

 

V. CONCLUSION 

We have demonstrated the potential of sub-acoustic 

speech to control a web browser, recognize a simple set of 

complete words and discriminate a subset of English vowels 

and consonants. The method has proven sufficiently accurate 

for applications that have limited vocabulary requirements. 

An open question is whether this approach can achieve full-

scale sub-acoustic speech recognition resulting from the loss 

of discriminability of words dependent in English on plosive 

and tonal rather than muscle response. Whether the EMG 

signals are rich enough to disambiguate such cases and 

big chi n c ut dig fo rk ge nre gut he lp joy lid m a t no pu t r e d she sit ta lk the n th in va t with ya cht za p T OTAL

b ig 39 0 0 4 9 0 4 0 0 7 11 0 11 2 0 0 0 0 4 7 2 0 0 100

c hin 7 7 0 13 3 3 0 0 0 7 0 1 0 7 17 7 0 0 10 0 0 7 3 0 101

c ut 0 0 43 0 0 0 22 0 0 16 0 2 0 6 0 0 0 6 4 0 0 0 2 101

d ig 0 0 0 83 0 0 0 0 0 6 0 8 0 0 0 0 0 0 0 0 0 0 2 99

fo rk 16 0 0 9 37 0 4 0 0 9 0 2 5 5 0 0 0 0 0 1 2 2 0 0 101

g e nre 2 2 0 2 2 15 5 0 0 0 0 1 0 2 22 12 0 2 5 5 0 2 10 0 98

g ut 0 0 14 0 0 2 52 0 0 11 0 0 0 11 0 0 0 2 0 2 5 0 0 99

h e lp 0 0 6 18 0 0 22 24 0 14 0 6 2 8 0 0 0 0 0 0 0 0 0 100

jo y 0 3 0 3 6 6 6 0 0 14 0 3 3 31 6 0 3 8 6 0 3 3 0 104

li d 0 0 8 0 0 0 10 0 0 75 0 3 0 3 0 0 0 3 0 0 0 0 0 102

m a t 8 0 0 0 4 2 0 0 0 0 56 0 2 8 0 0 0 2 0 1 2 6 0 0 100

n o 0 0 0 23 0 3 0 0 0 11 0 4 0 0 9 3 0 3 0 0 0 9 0 0 101

p ut 27 0 2 0 4 0 8 0 0 6 6 0 31 13 0 0 0 0 0 2 0 0 0 99

re d 0 0 0 0 0 0 0 0 0 12 2 0 7 62 5 0 0 2 7 0 2 0 0 99

s he 0 0 0 5 0 0 5 0 0 5 0 2 0 41 32 0 0 2 2 2 2 0 0 98

s it 0 4 2 20 2 0 4 0 0 0 0 2 9 0 16 18 0 0 0 2 0 2 0 0 99

ta lk 0 0 2 35 2 0 2 0 0 13 0 2 2 7 7 0 0 9 0 0 2 0 0 0 101

th e n 9 0 9 0 0 0 6 0 0 3 9 0 3 12 6 0 0 6 36 0 0 0 0 99

th in 0 0 0 0 0 0 3 0 0 3 5 0 0 13 0 0 0 8 69 0 0 0 0 101

v a t 10 0 0 2 23 0 0 0 0 2 4 2 6 4 0 0 0 0 2 3 3 8 2 0 98

w ith 7 0 0 0 2 0 0 0 0 7 11 0 2 25 0 0 0 0 2 7 34 2 0 99

y a cht 0 0 7 5 0 2 9 0 0 23 0 2 2 23 0 0 0 14 5 0 5 5 0 102

z a p 2 0 0 40 0 2 7 0 0 10 0 1 4 0 14 2 0 0 0 2 2 0 0 2 97

T OTAL 12 7 16 93 2 62 94 35 1 69 24 0 254 104 15 5 90 352 91 0 17 68 146 8 1 89 25 6

Figure 5: QUASAR non-capacitive sensor 

Table 5: Vowel recognition 
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handle the full richness of English speech has yet to be 

determined. Other languages with smaller basic vowel and 

consonant sets such as Japanese may prove viable sooner.  

Significant challenges remain. We must generalize trained 

feature sets to other users in continuous speech situations, 

demonstrate real time training, optimize transformations and 

neural networks to reduce error levels, reduce sensitivity to 

signal noise and electrode locations, and handle changes in 

the physiological states of the users.  
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